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Variations in gradient waveforms can provide different levels of sensitivity to microstructure parameters
in diffusion-weighted MR. We present a method that identifies gradient waveforms with maximal sensi-
tivity to parameters of a model relating microstructural features to diffusion MR signals. The method
optimizes the shape of the gradient waveform, constrained by hardware limits and fixed orientation,
to minimize the expected variance of parameter estimates. The waveform is defined discretely and each
point optimized independently. The method is illustrated with a biomedical application in which we
maximize the sensitivity to microstructural features of white matter such as axon radius, intra-cellular
volume fraction and diffusion constants. Simulation experiments find that optimization of the shape of
the gradient waveform improves sensitivity to model parameters for both human and animal MR sys-
tems. In particular, the optimized waveforms make axon radii smaller than 5 lm more distinguishable
than standard pulsed gradient spin-echo (PGSE). The identified class of optimized gradient waveforms
have dominant square-wave components with frequency that increases as the radius size decreases.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion-weighted MR is a non-destructive probe into the
microstructure of materials, and can provide insight into pore mor-
phology and fluid transport [1]. The technique is therefore useful
for studying porous structures such as sandstone rocks, catalysts,
colloids and biological tissues and is used for example in paint
and drilling industry [2], food industry [3–6], studying minerals
[7] or biomedical sciences [8–11].

The application that motivates this work is biomedical imaging
where diffusion MRI offers the potential to map microstructural
features in tissue. For example, in nervous tissue such as white
matter in the brain, axon radius affects nerve function as it deter-
mines the conduction velocity [12,13], which controls the delay
between the receipt of a stimulus by a nerve and the response to
it. Thus imaging axon radius is a key challenge [8–10] as a reliable
technique could provide insight into neuronal diseases that alter
axon radius distribution, such as autism [14,15], amyotrophic
lateral sclerosis (ALS) [16,17] or schizophrenia [18,19]. In addition,
recent research suggests that aggressive tumors are usually char-
acterized with a larger cell nuclear size [20]. Early studies to mea-
sure cell nuclear size with diffusion MRI [11] and use it for
diagnostic purposes in cancers show promise.
ll rights reserved.

k).
The simplest and most commonly used pulse sequence in diffu-
sion MRI is the pulsed gradient spin-echo sequence (PGSE). The
standard PGSE sequence has a pair of equal approximately rectan-
gular (constant over an interval and zero outside) gradient pulses
either side of the refocussing pulse in a spin-echo sequence. Tech-
niques for estimation of microstructure parameters that use the
standard PGSE sequence rely on strong gradient strengths and long
acquisition times [8–10,21–26], which makes them impractical for
human in vivo studies since human imaging systems have limited
gradient strengths of up to around 0.08 T/m. Sensitivity to pore size
depends critically on gradient strength and the ability to distin-
guish small radii decreases rapidly as gradient strength decreases.
Alexander [21] demonstrates in simulation that, by carefully
choosing the combination of PGSE settings, a human scanner with
0.07 T/m gradients can estimate axon radii down to about 2.5 lm
reliably while smaller radii are identifiable as small but indistin-
guishable from one another. Later work [27] shows promising
results in fixed tissue and the brain. Barazany et al.’s [10] results
suggest that axon diameters down to 0.2 lm are distinguishable
in an in vivo rat experiment, with 0.3 T/m gradients. Barazany as-
sumes known fiber orientation whereas Alexander et al. [21,27] do
not, thus the lower limit for human scanners may decrease slightly
if orientation is known.

Alternative gradient waveforms potentially discriminate smal-
ler pore sizes. Oscillating gradient spin-echo (OGSE) sequences
have similar basic structure to standard PGSE, but use sinusoid

http://dx.doi.org/10.1016/j.jmr.2010.05.017
mailto:i.drobnjak@cs.ucl.ac.uk
http://dx.doi.org/10.1016/j.jmr.2010.05.017
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr


1 integ rounds to the nearest integer.
2 We made some minor adaptations to the method in [33], in order to improve the

implementation (contact the authors for details) and agreement with models in
simple geometries.
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waveforms instead of the rectangular pulses. These sequences
measure the diffusion behavior on the time scale of the period of
each oscillation, hence higher frequency of the oscillating gradients
corresponds to a smaller effective diffusion time, which helps dis-
tinguish smaller pore sizes [28,11,29,30]. Other waveforms, such as
chirped [31], that contain a range of frequencies may provide even
greater sensitivity.

Here we use a stochastic optimization procedure to search for a
combination of gradient waveforms that are most sensitive to
microstructure parameters typical in biomedical applications. We
use the same basic pulse sequence structure as the PGSE and the
OGSE sequence, but replace the rectangular or the sinusoidal
pulses, with waveform defined discretely by a sequence of values
that are free to vary independently. We optimize an imaging pro-
tocol consisting of several measurements, each with their own
waveform, to maximize their sensitivity to the parameters of a
simple model that includes the axon radius.

We build on the optimization framework in [21], which opti-
mizes a protocol consisting only of rectangular PGSE measure-
ments for sensitivity to the model parameters. The optimization
in [21] seeks the pulse sequence parameters (gradient strength G,
diffusion time D and gradient duration d) that minimize the mean
Cramer-Rao Lower Bound (CRLB) of the parameters. To extend the
framework for generalized gradient waveforms, constrained only
by hardware limits and fixed orientation, we use the matrix for-
malism to calculate the diffusion signal [32,33], and optimize each
point on each waveform. Experiments demonstrate the new opti-
mization using the same simplified version of the CHARMED model
[34] which was used in [21]. Further, they compare the sensitivity
of the optimized generalized waveform protocols to rectangular
PGSE protocols and study, in simulation, the ability of both opti-
mized protocols to recover axon radius.

We start with the outline of the tissue and signal model to-
gether with the optimization framework in Section 2. Experiments
follow which compare sensitivity to model parameters, over a
range of axon radii, of optimized generalized waveform protocols
and optimized rectangular waveform protocols in Section 3. Final-
ly, Section 4 summarises findings, highlights limitations, and sug-
gests further work and applications.

2. Methods

This section first describes the model used to calculate the dif-
fusion MR signal. It then describes the optimization framework
used to determine the shape of the gradient waveform.

2.1. Tissue model

The white matter tissue model which we use is described in
[21]. It is a two compartment model similar to Assaf et al.’s com-
posite hindered and restricted model of diffusion (CHARMED)
[34], but with a single axon radius rather than a distribution and
assuming cylindrical symmetry of the apparent diffusion tensor
in the extra-cellular space. The model assumes parallel non-abut-
ting cylindrical axon cells of fixed direction, with equal radii and
impermeable walls embedded in a homogenous extra-cellular
medium. The parameters of the model are: the volume fraction
f 2 [0,1] of the intra-cellular compartment; the axon direction n;
the axon radius a; the restricted diffusion coefficient Dr; and the
hindered diffusion coefficient Dh. Ref. [21] gives a more complete
description of the tissue model.

2.2. Pulse sequence model

The pulse sequence model has the same basic structure as the
PGSE sequence, with two generalized (arbitrary) gradient
waveforms in place of the two fixed rectangular pulses as Fig. 1
illustrates.

The rectangular pulses are identical, and placed one on each
side of the 180� RF pulse, first one starting Tprep time after the
90� RF pulse is finished. They are defined with three parameters:
the maximal gradient strength G; the length of the gradient pulses
d; and the time between the onsets of the two pulses D.

The generalised gradient waveforms, go, are placed one on each
side of the 180� RF pulse. The first one, go(ns), n = 1, . . . ,N, is param-
etrized with N equally spaced points, and starts Tprep time after the
90� RF pulse is finished. The second one is the mirror reflection of
the first. The full representation of the gradient in time is

gðnsÞ ¼

0 06 n< N1

goððn�N1 þ 1ÞsÞ N1 6 n< N1 þN

0 N1 þN 6 n< N1 þNþN2

goððN1 þ2NþN2 � nÞsÞ N1 þNþN2 6 n< N1 þ 2NþN2

0 N1 þ 2NþN2 6 n;

8>>>>>>><
>>>>>>>:

ð1Þ

where N1 = integ((P90/2 + Tprep)/s) is the number of steps before the
gradient starts,1 N2 = integ(P180/s) is the number of steps during
the 180� RF pulse and N = integ((TE/2 � P180/2 � P90/2 � Tprep)/s)
is the number of steps during one gradient waveform, n is an inte-
ger, TE is the echo time, P90 and P180 are respective durations of
the 90� and 180� RF pulses, and s is a fixed time interval.

We refer to the generalized waveforms as gen and to the rectan-
gular waveforms as rec throughout the rest of this paper. Fig. 1
illustrates the schematic representation of both gen and rec pulse
sequences. We assume that the gradient direction for both se-
quences is fixed and perpendicular to the fiber direction.

2.3. Signal model

Following [34], we write the diffusion MR signal

E ¼ fEr þ ð1� f ÞEh; ð2Þ

where Er and Eh are normalized MR signals coming from the re-
stricted (intra-cellular) and the hindered (extra-cellular) compart-
ments respectively. The hindered diffusion produces Gaussian
displacement distribution so that [35,36]:

Eh ¼ exp �c2Dh

Z TE

0
FðtÞ � 2Hðt � TE=2ÞFðTE=2Þ½ �2dt

� �
; ð3Þ

where

FðtÞ ¼
Z t

0
gðt0Þdt0; ð4Þ

H(t) is the Heaviside step function and c is the gyro-magnetic ratio.
To estimate the diffusion signal from the restricted compart-

ment Er, we use the matrix formalism developed by Callaghan
[32,33],2 which can be used for both weak and strong diffusion
gradients. To use the matrix method, we quantize the gradient
amplitude go(ns) into steps of size gstep. This way, at time ns the
amplitude is mnq where q = (2p)�1csgstep, and mn is given by

mn ¼ integðgoðnsÞ=gstepÞ; ð5Þ

As shown in [32], we use the eigenmode expansion to describe the
diffusion propagator



Fig. 1. Schematic representation of the PGSE sequence with generalized gradient waveforms gen (top) vs. the standard PGSE with rectangular gradient waveforms rec
(bottom). The generalized gradient waveforms are mirrored about the 180� RF pulse, and amplitudes go(ns), n = 1, . . . ,N are optimized to give any shape. Points on the
waveforms are separated with equal time intervals s. The rectangular waveforms have fixed shape and are optimized by tuning G, d and D.
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Pðrjr0; tÞ ¼
X1
n¼0

expð�kntÞunðrÞu�nðr0Þ; ð6Þ

which gives the probability that a spin starting at position r will
move to r

0
at a later time t, and where un(r) are an orthonormal

set of solutions to the Helmholtz equation parametrized with corre-
sponding eigenvalues kn. The signal attenuation can then be written
as a matrix product

Er ¼ SðqÞR½AðqÞ�m2 � � �R½AðqÞ�mN RL½AðqÞ�mN R � � � ½AðqÞ�m2 RS�ð�qÞ ð7Þ

where the elements of the matrices S, A and R are

SnðqÞ ¼ V�1=2
Z

unðrÞ expði2pq � rÞdr ð8Þ

Rnn ¼ expð�knsÞ ð9Þ

Ann0 ðqÞ ¼
Z

u�nðrÞun0 ðrÞ expði2pq � rÞdr; ð10Þ

V is the pore volume, and q = qg where g is the unit gradient vector.
For the tissue model in Section 2.1 we assume cylindrical geometry
and introduce cylindrical polar coordinates in which the longitudi-
nal z-axis is a symmetry axis for the system. We fix the gradient
direction along the x-axis. The relevant polar coordinates are (r,h)
where r 2 [0,a], h 2 [0,2p], and the eigenvectors become

unðr; hÞ ¼ ankJn bnk
r
a

� �
cosðnhÞ; ð11Þ

where ank are the normalization constants

ank ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2

nk

pa2J2
nðbnkÞðb2

nk � n2Þ

s
; n–0 ð12Þ

a0k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

0k

pa2J2
0ðb0kÞðb2

0kÞ

s
; n ¼ 0;

Jn are standard (cylindrical) Bessel functions of order n, and bnk is
the kth root of the equation J0nðbnkÞ ¼ 0 [32,33]. The eigenvalues are

kn ¼
b2

nkDr

a2 : ð13Þ

We include terms in the eigenmode expansion (Eq. (6)) only from
the largest twenty bnk which provides sufficient accuracy [32].

2.4. The optimization framework

This section sets out the framework for optimizing the imaging
protocol. The protocol consists of M measurements each with a dif-
ferent discretized gradient waveform. We seek the mij,i = 1, . . . ,M,
j = 1, . . . ,N that maximize sensitivity to the model parameters.

The objective function

F ¼
XW
i¼1

ðJ�1Þii=w2
i ð14Þ

reflects the precision of the model parameter estimates, and is de-
fined as the sum of normalized CRLBs, for the model parameters
xi, i = 1, . . . ,W, where (J�1)ii is the CRLB for xi. Here, W = 4 and the
xi are f, Dr, Dh and a. The CRLB provides a lower bound on the var-
iance of a fitted model parameter that often correlates closely with
the true variance. We assume a Rician noise model; the full expres-
sion for the CRLB assuming the Rician noise is in [21].

Optimization of the discretized waveform amplitudes tunes the
mij, while the time and the gradient strength units s and gstep are
both fixed. Thus we need to calculate the unit q value and matrices
A, S and R only once prior to optimization. We calculate these using
standard MATLAB functions. To ensure feasibility of the sequence
on standard scanners, the optimization enforces gradient hardware
constraints onto the discretized waveform amplitudes mij: maxi-
mum gradient strength 0 6 jmijgstepj 6 jGmaxj, and the maximum
slew rate 0 6 j(mij �mij�1)gstepj/s 6 SR, where SR is the slew rate.
We enforce the maximum slew rate by setting the time interval
s > 2jGmaxj/SR.

We use a stochastic optimization algorithm, self-organizing
migratory algorithm (SOMA) [37] with population size of 50, 500
migrations and otherwise default settings, to perform the minimi-
zation. The full optimization runs SOMA five times and picks the
result with the smallest final value of the objective function. The
SOMA algorithm is parallelized using MATLAB distributed toolbox,
and a standard run takes 5 h on 16 processors.

The algorithm above optimizes the protocol for a fixed TE,
which is the same for all the measurements. However, the choice
of TE affects the sensitivity to the model parameters significantly,
because longer TE allows longer and more complex waveforms
but also reduces signal through T2 decay. Here we optimize the
choice of TE crudely by running the optimization separately at sev-
eral TEs and taking the one that minimizes F. The noise level used
to calculate the objective function is adjusted in line with the opti-
mized TE, as in [21].
3. Experiments and results

This section shows the results of three experiments. The first
compares optimized generalized waveform protocols for different
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hardware limits. The second and third experiments evaluate opti-
mized generalized waveform protocols against the optimized rect-
angular waveform (standard PGSE) protocols. The second
compares the sensitivity to model parameters by comparing the
value of their respective objective functions. The third compares
the ability to recover model parameters by comparing their respec-
tive posterior distributions.
3.1. Experiment 1: Optimized generalized gradient waveforms

The experiment tests three settings of gradient system. The first
one, Gmax = 0.04 T/m, slew rate SR = 200 T/m/s, is typical of current
human systems. The second one, Gmax = 0.08 T/m, SR = 400 T/m/s, is
at the limit of what modern human scanners can achieve on live
subjects. The third one, Gmax = 0.4 T/m, SR = 2000 T/m/s, is achiev-
able in modern small-bore animal scanners. We assume d-function
priors on the model parameters: f = 0.7,Dr = 1.7 � 10�9 m2/s and
Dh = 1.2 � 10�9 m2/s. We assume multiple d-function priors on
axon radius a 2 {0.5, 1, 2, 3, 5} lm, and optimize the protocol sep-
arately for each. The protocol consists of M = 4 measurements fol-
lowing [21].

We optimize separately for each TE 2 {0.04, 0.06, 0.08, 0.1,
0.12} s. We set the SNR of the unweighted (no gradients) signal
at 20 when TE = 0.08 s and use T2 = 0.07 s, which is typical for
white matter, to adjust for different TE. Duration of the RF pulses
and preparation time are as in [21]: P180 = 0.005s, P90 =
0.0025 s, Tprep = 0.0059 s. The waveform unit-parameters s =
0.00041 s and gstep = 0.0004 T/m are a couple of orders of magni-
tude smaller than the diffusion times and maximum gradient
strength to ensure that the discrete waveform function is a good
approximation of the continuous waveform. The time interval s
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Fig. 2. Optimized generalized gradient waveforms go(ns), n = 1, . . . ,N when Gmax = 0.0
measurements are ordered with decreasing dominant frequency of oscillations, with the
also satisfies s� a2/Dr, making sure that the narrow pulse approx-
imation is valid within each time interval.

Figs. 2–4 show the optimized generalized gradient waveforms,
go(ns),n = 1, . . . ,N for the human scanner values Gmax = 0.04 T/m
and Gmax = 0.08 T/m, and animal scanner value Gmax = 0.4 T/m
respectively. Each row corresponds to a different radius a, and
shows the four optimized measurements for that a.

We consistently observe a square-wave pattern emerge in the
optimized waveforms and each protocol contains square-wave
gradient waveforms with a range of frequencies. Broadly, however,
the frequency of the square waves increases as radius decreases.
The amplitude of the square-waves is consistently equal to Gmax.
These observations are consistent for all three gradient systems.

The duration of the waveforms vary for different radii because
of differences in the optimized TEs. Table 1 shows the TE values
that minimize F for each gradient system and each radius. For radii
larger than 3 lm, the TE value decreases with increasing maximum
gradient strength which reflects the fact that higher gradients al-
low similar sensitization in a shorter time. However, for radii smal-
ler than 2 lm, the TE value remains similar over all gradient
strengths, which suggest that longer pulses are required to get
optimal sensitivity and the optimization finds the largest pulse
duration with acceptable T2 decay. The anomalous low TE for
a = 0.5 lm and Gmax = 0.04 T/m likely reflects the lack of any sensi-
tivity to low a at this low gradient strength; lower TE increases sig-
nal and thus sensitivity to the other parameters.

3.2. Experiment 2: Comparison of the objective functions

This experiment evaluates the optimized generalized waveform
protocol against the optimized rectangular waveform protocol by
comparing the value of their respective objective functions. To
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4 T/m. There are four measurements for each a-priori setting of radius a. The
measurements of the highest dominant frequency in the first column from the left.
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Fig. 3. As Fig. 2 for Gmax = 0.08 T/m.
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Fig. 4. As Fig. 2 for Gmax = 0.4 T/m.
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Table 1
Optimized TE values (in ms).

a (lm) 0.5 1 2 3 5

Gmax = 0.04 T/m, SR = 200 T/m/s 80 100 100 120 120
Gmax = 0.08 T/m, SR = 400 T/m/s 100 100 100 100 100
Gmax = 0.4 T/m, SR = 2000 T/m/s 100 100 80 80 60
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optimize the rectangular waveform sequence we search the set of
combinations of G, d and D to minimize the objective function F as
described in [21]. We use the same model and parameter values as
for the generalized waveform optimization.

Fig. 5 shows the value of the objective function as a function of
radius a for all different gradient settings. We consistently obtain
lower values of the objective function for gen compared to rec,
3 3.5 4 4.5 5

 (µm)

rec,Gmax=0.04T/m
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which suggests greater sensitivity to the model parameters. The
strength of the gradients (Gmax) also reduces the objective function
confirming that the sensitivity increases for larger gradient
strengths.

3.3. Experiment 3: Comparing the estimated model parameters

This experiment evaluates the optimized generalized waveform
sequence against the optimized rectangular waveform sequence by
comparing the precision and accuracy of the estimated model
parameters. The simple MCMC procedure in [21] provides samples
of the posterior distributions of the model parameters given the
data. We generate synthetic data for both gen and rec waveforms
using the optimized protocols in Experiments 1 and 2. We add Ri-
cian noise to each measurement so that for the unweighted (no
gradients) image SNR = 20 [21]. To fit the model, we assume 250
repeats of each of the four measurements with independent noise.
We initialized the model parameters to their true value to speed up
convergence.

Figs. 6–8 show the posterior distributions on radius a for
Gmax = 0.04, 0.08 and 0.4 T/m respectively. The posterior distribu-
tions are markedly narrower for the optimized generalized wave-
forms, demonstrating higher precision in estimating the radius
than the optimized rectangular waveforms. The bottom rows of
the figures confirm that the generalized gradients sequence pro-
duce more accurate (closer to the diagonal) and precise (smaller
error bars) estimates compared to the rectangular gradients se-
quence. The posterior distributions are also narrower for the stron-
ger gradient strength for both type of waveforms.

Figs. 9–11 show the mean and standard deviation of posterior
distributions on model parameters f, Dr and Dh for Gmax = 0.04,
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Fig. 7. As Fig. 6 for G
0.08 and 0.4 T/m respectively. With gen, the mean of the posterior
distributions are closer to their true value, and standard deviation
bars are smaller for all three model parameters, than with rec over
all radius sizes. As for the axon radius, the estimates are closer to
the true values as the gradient strength increases.

4. Discussion

Here we demonstrated the optimization framework for the esti-
mation of the axon radii. Optimizing the shape of the gradient
waveforms produces results which suggest greater sensitivity to
microstructure parameters than conventional rectangular gradient
waveforms. The optimization of the shape of the waveform makes
the objective function consistently lower for all axon radius sizes,
as seen in Fig. 5. Furthermore, the generalized waveform results
demonstrate higher precision and accuracy of axon radius esti-
mates than the optimized rectangular waveforms (as seen in
Figs. 6–8) over all maximum gradient strengths Gmax. The same is
true for all the other model parameter estimates.

Square wave oscillations appear consistently in the optimized
protocols. The frequency of the waveforms increases as the radius
size decreases. These findings support previous work [11,28,29]
that models the signal from sinusoid oscillating gradient pulses
and shows that higher frequency corresponds to a smaller effective
diffusion time, which provides sensitivity to smaller pore sizes.
Each period of the oscillation is similar to a separate standard PGSE
experiment with two single rectangular pulses and with diffusion
time similar to the time period of the oscillation; multiple periods
emphasise sensitivity to displacements over that diffusion time.
One new and interesting feature of our optimized waveforms, is
that we get square, and not sinusoidal, waves most likely because
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Fig. 8. As Fig. 6 for Gmax = 0.4 T/m.

Fig. 9. Gmax = 0.04 T/m. Mean and standard deviations of posterior distributions on model parameters f, Dr, Dh for the generalized waveform (gen) and the rectangular
waveform (rec) sequence. The true values of the parameters are shown with dashed lines.
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the square-wave maximizes the diffusion weighting in each period
of the waveform.

Higher gradient strength increases the ability to distinguish
smaller axon radii. It also gives much more accurate and precise
estimates of all model parameters. The differences are quite dra-
matic, for both generalized and rectangular waveforms. Higher
gradient strength provides greater diffusion weighting over shorter
diffusion times which helps distinguish smaller radii. Another
advantage of higher gradient strength is to allow acquisitions with
shorter TE, and hence higher SNR.

The high dimensionality of the search space makes the global
optimum set of waveforms hard to find. Although the waveforms
we find approximate square-waves, most contain glitches and
departures and some appear almost random noise. Increasing the
population size in the algorithm makes only slight improvements,
most likely because the apparently noisy features in the wave-
forms decrease sensitivity only very slightly compared to the per-
fect waves we might expect at the global optimum. We view this
general waveform optimization as a tool for identifying the class
of waveform most sensitive to a particular system rather than
the exact solution. Once we have identified the class of waveforms,
we can reduce dimensionality to improve convergence using more
targeted optimizations. With the model we use here, for example,
we might constrain each measurement of the protocol to have
square-wave pulses and optimize just the amplitude, frequency
and duration of each.

Furthermore, the optimization suggests that the highest fre-
quency waveform is the same for 0.5 lm and 1 lm radius. How-
ever the high frequency waveform in both protocols reach the
maximum possible with the fixed time interval s. A limitation of
the current implementation is that it cannot represent higher fre-
quency oscillation that are still achievable if the amplitude is low-
er. This may explain the dramatic reduction in accuracy of
parameter estimates when radius a = 0.5 lm compared to higher
settings of a (see Figs. 9, 10). We could adapt the waveform repre-
sentation to accommodate this, but the numerical implementation
Fig. 10. As Fig. 9 for
of reducing the constraints on s is complex. Since, as mentioned
above, this very general optimization is primarily meant to identify
the broad class of protocols the added complexity seems
unnecessary.

Here we limit the technique to optimize sequences with the
same structure as the standard PGSE sequence, but other pulse se-
quences can provide diffusion MR measurements that may be bet-
ter for estimating the parameters of particular models. For
example, the multi-PGSE sequence involves multiple consecutive
PGSE blocks. Each PGSE block, comprising a pair of gradients of
duration d, sensitizes the signal to motion that occurs during an
interval D [38]. A previous study [38] suggests that multi-PGSE se-
quence make it possible to measure smaller pore sizes, to improve
the accuracy of pore size measurements and potentially to distin-
guish different pore shapes. In particular, a special case of multi-
PGSE sequences with two PGSE blocks, double-PGSE, have received
increasing attention recently because such experiments are sensi-
tive to restricted diffusion even for diffusion times that are long
compared to the pore dimensions [39]. STEAM [40] and steady-
state free procession (SSFP) [41] allow measurements with much
longer diffusion times by avoiding T2 decay outside the gradient
pulses. Twice-refocused spin-echo (TRSE) sequences [42] can be
more economic than PGSE and produce less eddy-current distor-
tions. Clayden [43] demonstrates optimization of TRSE protocols,
but using only rectangular gradient waveforms. Extension of our
waveform optimization procedure potentially extends to more
complex pulse sequence structures, although waveform represen-
tations that enforce necessary constraints, such as

R
gðtÞdt ¼ 0,

may be more challenging to find.
We also fix the orientation of the gradient throughout. The algo-

rithm extends naturally to allow the gradient orientation to vary
during the waveform. Such variation may provide additional sensi-
tivity to pore size [23,44–46,39,47].

The optimization framework adapts easily to other models of
diffusion. Here we fix the axon radius a and the axon direction n
to one value. Future work will expand this by introducing integra-
Gmax = 0.08 T/m.
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tion over a model distribution for a, as in [34], to include a distri-
bution of axon radii. Preliminary experiments with this idea show
that the optimized protocols for a tissue model with two or three
radii, tend to contain the highest frequency waveform measure-
ments from each single-radius protocol. These results suggest that
the wider the range of a-priori radii the wider the range of frequen-
cies in the optimized protocol. Furthermore, when the optimized
protocol for a particular radii is applied to a tissue model of a
different radius, we find that it is significantly better than esti-
mates from the optimized standard PGSE protocols. In applications
that estimate indices of a distribution of pore sizes [10,27] there-
fore, we expect significant improvements moving to optimized
general waveform protocols over PGSE, but more incremental fur-
ther improvement by refining the choice of a-priori radii. Integra-
tion over a model distribution for n incorporates a distribution of
fiber directions. Depending on the application and the parameters
of interest, models can for example include: compartment wall
permeability which a pair of coupled differential equations [8]
can model; additional compartments such as glial cells in the
white matter, which a third compartment with spherical restric-
tion might model, as in [8]; varying relaxation times between
compartments, as in [48].

The optimized gradient waveforms we presented here can be
easily implemented on the real scanner systems since we purpose-
fully constrain the optimization to produce realizable waveforms,
and the gradients commonly available on MRI systems can readily
oscillate at frequencies of the order of kilohertz [11]. Complicated
waveforms with very high frequencies can potentially create diffi-
culties due to artifacts such as eddy-currents or gradient heating.
Practical implementation will need to handle any such problems.
However, extra constraints are straightforward to include in the
optimization, and these can be implemented to minimize the
artifacts.

Other factors of in vivo experiments might influence the extrac-
tion of parameters. In order to simulate noise we use SNR = 20
here, which we believe is a reasonable for in vivo experiments.
Additional experiments (not shown) verify consistent improve-
ment with the optimized generalized waveforms over the opti-
mized rectangular waveforms for a range of SNR. We do not
consider further possible complications from movement and phys-
iological noise. However, recent work [10,27] manages to over-
come these problems when using PGSE protocols. These factors
should present no greater challenge for an optimized waveform
measurements.

Previous work [11,28] studies an oscillating gradient method
for measuring pore sizes and compare various kinds of oscillation.
Our aims are quite different: we look for the best possible wave-
form shape for a given application, e.g. for estimation of the axon
radius, with no prior assumptions about its form except to satisfy
the hardware constraints. We are not limited to oscillations,
although the optimal shapes do contain oscillations. Callaghan
and Stepisnik [29,30] theoretically determine that oscillating
waveforms have optimal properties in general for measuring spin
motion. Here, we take a more empirical approach and optimize
not only one waveform but the whole imaging protocol, which
can contain many different measurements, for a specific model.
The proposed optimization framework, in which the waveforms
and other imaging parameters are learned, is a very novel approach
to pulse-sequence and image protocol design that extends to a
wide range of imaging applications.
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